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Abstract 
Most display characterization methods generally assume that 

displays have two fundamental characteristics, channel-
chromaticity-constancy and channel-independence. Consequently, 
based on the assumption of channel-chromaticity-constancy, only 
one electro-optical transfer function (EOTF) is used for each 
channel to establish the relation between the digital input values 
and the output luminance levels. Meanwhile, based on the channel-
independence assumption, the channel color values are simply 
summed to acquire mixed color values. However, these 
assumptions are not so applicable in the case of liquid crystal 
(LC)-based mobile displays. Therefore, this study proposes the 
modeling of distinct EOTFs in terms of the X, Y, and Z values for 
each channel to consider the differences among the EOTFs 
resulting from channel-chromaticity-inconstancy. In addition, to 
overcome the poor additivity property among the channels due to 
channel-interaction, the proposed method also models and uses the 
EOTFs of the X, Y, and Z values for the inter-channel components 
cyan, magenta, yellow, and gray. The mobile display color values 
predicted by the proposed characterization method are more 
accurate than those predicted by other characterization methods 
due to considering the channel-chromaticity-inconstancy and/or 
channel-dependence of the display. 

Introduction 
The recent growth in display device technologies has been 

remarkable, including the commercial application of cathode ray 
tubes (CRTs), liquid crystal displays (LCDs), plasma display 
panels (PDPs), and organic light emitting diodes (OLEDs). In 
particular, miniaturized and lighter display devices have been 
developed for mobile devices, such as cellular phones and PDAs. 
Yet, when compared with a monitor, mobile displays are unable to 
display images with a good color fidelity due to their smaller 
gamut, dimmer luminance, and inferior color reproduction ability 
related to their low power consumption. Thus, to reproduce 
accurate colors on mobile display devices, color management 
systems are required. In such color management systems, it is 
essential to establish a relationship between the device-dependent 
digital input values and the device-independent output color values 
for display devices.  

In recent years, several methods of display characterization 
have been proposed and developed. The gain-offset-gamma (GOG) 
model [1] is a well-known method for characterizing the 
exponential electro-optical transfer function (EOTF) of displays 
like CRTs. This method is a simple yet accurate way of predicting 

color values for CRTs. However, for LCDs with S-shaped EOTFs, 
the GOG model is not suitable. As such, an S-curve model (version 
I) [2] to model S-shaped EOTFs of LCDs has been proposed. 
Essentially, the two methods involve the same two-step procedure: 
first, linearization between the digital input values and the output 
luminance levels for the red, green, and blue channels under a 
channel-chromaticity-constancy assumption, and second, linear 
summation using the output color values of the individual channels 
under a channel-independence assumption [3]. However, the 
channel-chromaticity-constancy assumption is not perfect in 
LCDs. Thus, in the S-curve model (version II) [2], derivatives of 
the EOTFs have been used to model the chromaticity-changes of 
the LCD channels. Yet, such EOTF derivatives do not fit well as 
regards the chromaticity-changes. Another approach to the weak 
channel-chromaticity-constancy characteristic in LCDs is a model 
with 9 independent EOTFs [3]. However, none of these models 
consider the poor channel-independence condition in LCDs. 
Consequently, to approximate the color variation caused by 
channel-interaction, the masking model [4] uses cyan, magenta, 
yellow, and gray as well as the RGB primary colors. In addition, to 
minimize the error caused by a variation in the channel-
chromaticity, the CIEXYZ vectors are obtained using their first 
principal component vector. Yet, there is a limit to representing 
three-dimensional CIEXYZ vectors using only one principal 
component vector. Plus, the use of all three principal component 
vectors is inefficient when compared to the direct use of CIEXYZ 
vectors.  

Accordingly, to consider the weak channel-chromaticity-
constancy characteristic, this paper proposes the direct modeling of 
three distinct EOTFs for the X, Y, and Z values of each channel in 
contrast to the S-curve model, which use derivatives of the EOTFs, 
and the masking model, which only uses one principal component 
of the CIEXYZ vectors. In addition, for the weak channel-
independence characteristic resulting from cross-talk between 
channels [5], [6], the proposed method models and uses three 
EOTFs for both the red, green, and blue channels and the inter-
channel components cyan, magenta, yellow, and gray, similar to 
the masking model. Experimental results demonstrate that the 
proposed method yields a better performance as regards predicting 
the color values on a LC-based mobile display compared to other 
conventional methods. 

Channel-chromaticity-constancy 
One of the important assumptions that allow the possibility of 

display characterization using the GOG model or S-curve model is 



 

 

the chromaticity constancy of the channels [3]. This assumption 
can be represented in terms of the CIEXYZ tristimulus as follows: 

max,)()( rrrr IdRdI =  (1) 

max,)()( gggg IdGdI =  (2) 

max,)()( bbbb IdBdI =  (3) 

where )( pp dI , I = X ,Y , and Z  and p = r , g , and b , represents 
one of the CIEXYZ values at an arbitrary digital input value 

pd  
and 

max,pI means the CIEXYZ values at the maximum digital input 
value for the red, green, and blue channels, respectively. 

However, as shown in Figure 1, the measured electro-optical 
transfer characteristics of the X, Y, and Z values for a LC-based 
mobile display differ from each other for the red, green, and blue 
channels. If the channel chromaticity is perfectly constant, the 
measured electro-optical transfer characteristics of the X, Y, and Z 
values should be identical for each channel, according to equations 
(1), (2), and (3). As such, Figure 1 shows that the characteristic of 
a LC-based mobile display as regards the channel-chromaticity-
constancy is poor. 

Channel-independence 
The other important assumption that needs to be guaranteed in 

display characterization models that use the respective EOTFs for 
each channel is the channel-independence [3]. Under this 
assumption, the display characterization can be simply performed 
by modeling the EOTF for the red, green, and blue channels 
individually and summing them. The expression of the channel 
independence relative to the CIEXYZ values can be written as: 

)()()(),,( bbggrrbgrrgb dIdIdIdddI ++=  (4) 

where ),,( bgrrgb dddI , I = X , Y , and Z , represents one of the 
CIEXYZ values for the digital input values 

rd , 
gd , and 

bd , while 
)( rr dI , )( gg dI , and )( bb dI  are the CIEXYZ values for the red, 

green, and blue channel, respectively. Namely, )( rr dI , )( gg dI , 
and )( bb dI  means )0,0,( rrgb dI , )0,,0( grgb dI , and 

),0,0( brgb dI , respectively. 
However, the channel independence property is not ideal for 

an LC-based mobile display, as shown Table 1, which presents the 
average and maximum color differences of the X, Y, Z, and 
CIELAB values between measured colors for 200 patches mixed 
using at least two pure colors and the sum of the measured pure 
colors for the corresponding patches of each channel. All the 
colors were chosen from among 216 (6×6×6) colors equally spaced 
in an RGB cube. All the measured color values in Table 1 
represent values where black level values have already been 
subtracted from the measured original values. Note that the 
average 

abE∆  color difference was higher than 3 and the maximum 

abE∆  color difference was beyond 7. 

Proposed characterization method for mobile 
LCD 

The S-curve model attempts to consider the unstable channel-
chromaticity by dividing the luminance levels for each channel 
into those of the self-channel and other channels, and modeling the 
luminance level components of the other channels using the 
derivative of the EOTF of the self-channel for each channel.  

 
(a) 

 
 (b) 

 
 (c) 

Figure 1 Electro-optical transfer characteristics of X, Y, and Z values for red, 
green, and blue channel in mobile LCD; (a) electro-optical transfer 
characteristics for red channel, (b) electro-optical transfer characteristics for 
green channel, and (c) electro-optical transfer characteristics for blue channel.  

Table 1. Color differences between mixed colors and sum of 
pure colors. 

Between ),,( bgrrgb dddI  and 
)()()( bbggrr dIdIdI ++  200 (6×6×6-16) 

patches 

X∆  Y∆  Z∆  
abE∆  

Average 2.81 3.07 2.80 3.29 

Maximum 9.99 11.33 10.62 7.81 



 

 

However, the derivative of the EOTF of the self-channel does not 
fit well with the luminance level components of the other channels 
for each channel. Moreover, the S-curve model assumes the 
channel-independence of displays and does not consider the 
violation of additivity, resulting from the cross-talk effect [5], [6] 
among channels, in LCDs. Meanwhile, to consider the violation of 
additivity, the masking model uses cyan, magenta, yellow, and 
gray, as well as the RGB primary colors. Plus, to consider the 
inconstancy of the channel chromaticity in displays, the masking 
model calculates the CIEXYZ vectors using a single principal 
component vector extracted from measured CIEXYZ values for 
each color. However, approximating the three-dimensional 
CIEXYZ vectors into a single vector can produce a large 
characterization error if the linearity among the CIEXYZ vectors is 
weak. Also, if all three principal component vectors are used, there 
is no reason to use the comparatively complex principal 
component analysis algorithm to calculate the exact CIEXYZ 
vector. Rather, it is more effective to use the CIEXYZ vector 
directly. 

Therefore, in the proposed characterization method, the 
EOTFs of the X, Y, and Z values, which have different shapes 
from each other, as shown in Figure 1, are modeled directly using 
the same parametric mathematical models as the S-curve model for 
the red, green, and blue channels as follows: 
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where )( rI dR , )( gI dG , and )( bI dB  are the normalized I  values, 
I = X ,Y , and Z , corresponding to certain digital input values 

rd , 

gd , and 
bd  for the red, green, and blue channel, respectively, and 

IpA , 
Ipα , 

Ipβ , and 
IpE , p = r , g , and b , are the model 

parameters to be calculated. To estimate the optimal parameters, 
32 patches are created with equally-spaced digital input values, 
then the CIEXYZ values for each patch are measured and 
normalized for each channel. Thereafter, the normalized CIEXYZ 
values and digital input values for the patches are used, while an 
optimization process is applied to calculate the optimal parameters. 

Also, for the inter-channel components cyan, magenta, 
yellow, and gray (CMYK), the EOTFs of the X, Y, and Z values 
are modeled to consider the additivity violation between channels, 
resulting from the channel-interactions, as follows: 
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where 
cd , 

md , 
yd , and 

kd  represent the digital input values of 
two or three channels, such as ),,0( cc dd , ),0,( mm dd , 

)0,,( yy dd , and ),,( kkk ddd  and 
IC , 

IM , 
IY , and 

IK  are the 
normalized I  values, I = X , Y , and Z , for the inter-channel 
components cyan, magenta, yellow and gray, respectively. 

After modeling the EOTFs, the normalized CIEXYZ values 
corresponding to arbitrary digital input values for each channel and 
inter-channel are estimated using the modeled functions with the 
optimal parameters. Finally, the estimated )( rI dR , )( gI dG , 

)( bI dB , )( cI dC , )( mI dM , )( yI dY , and )( kI dK , I = X , Y , and 
Z , are used to estimate the CIEXYZ values as follows: 
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where 
1d  represents the largest, 

2d  represents the middle, and 
3d  

represents the smallest digital input value among the 
rd , 

gd , and 

bd  values and 
max,pI , 

max,sI , and 
max,kI , I = X , Y , and Z , 

correspond to the maximum CIEXYZ values for the corresponding 
channel, inter-channel, and the gray component, respectively. 

Experimental result 
The LC-based mobile display used in the experiments was 

from a SAMSUNG cellular phone, model SCH-S200. A Minolta 
CS-1000 spectroradiometer was used to measure the CIEXYZ 
values for the patches on the display. To estimate the EOTFs for 
each channel and inter-channel, 224 (32×7) red, green, blue, cyan, 
magenta, yellow, and gray patches were used. Also, to evaluate the 
performance of the characterizations in predicting arbitral colors, 
216 (6×6×6) patches equally spaced in the RGB cube were used. 

Table 2. Characterization errors in mobile LCD when using 
conventional characterization method and proposed method. 

Methods Patches 
32 

Red 
32 

 Green 
32 

Blue 

avgE∆  5.059 4.246 8.469 S-curve 
model I 

maxE∆  9.362 7.183 14.58 

avgE∆  1.284 1.176 3.331 S-curve 
model II 

maxE∆  10.39 5.984 8.612 

avgE∆  0.639 0.607 0.851 9 EOTF 
Modeling 

maxE∆  3.806 2.334 3.018 

avgE∆  3.294 2.523 4.670 Masking 
model 

maxE∆  6.145 4.387 8.725 

avgE∆  0.639 0.607 0.851 Proposed 
Method 

maxE∆  3.806 2.334 3.018 



 

 

Table 2 presents the forward characterization errors for the 
LC-based mobile display when using the conventional 
characterization models and the proposed characterization method, 
including the average and maximum color differences in CIELAB 
color space between the measured and estimated color values for 
the 32 patches for each channel and 216 (6×6×6) patches equally 
sampled from all over RGB color space. Overall, the errors for the 
proposed characterization method were smaller than those for the 
conventional methods. 

Conclusion 
The conventional GOG and S-curve models both assume 

channel-chromaticity-constancy and channel-independence in 
displays, thereby allowing the display characterization procedure 
to be simplified. However, although the performance of the GOG 
model is excellent for CRTs and has been standardized by ICC, the 
assumption of channel-chromaticity-constancy and channel-
independence is not as applicable to mobile displays. Namely, in 
mobile displays, the EOTFs of the X, Y, and Z values differ from 
each other and the additivity characteristic among the channel 
color values is inadequate to yield mixed color values based on 
summing the individual channel color values. Accordingly, this 
study modeled 21 EOTFs for mobile LCD characterization. To 
consider the weak channel-chromaticity-constancy characteristic, 
the distinct EOTFs of the X, Y, and Z values were all modeled for 
the red, green, blue channels, rather than a single EOTF. Plus, to 
compensate the poor channel-independence characteristic, the 
EOTFs of the X, Y, and Z values were also all modeled for the 
inter-channel components cyan, magenta, yellow, and gray, as well 

as for the three red, green, and blue channels. The experimental 
results for the mobile display characterization confirmed the 
effectiveness of the proposed method. However, the considerable 
complexity of this approach does impose limitations on direct 
inversion for the inverse characterization of mobile displays.  
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